Binary Tree Level Order Traversal
Problem Statement
You’re a tree surveyor mapping a binary tree level by level, from top to bottom, left to right. Return a list of lists, each containing the node values at that level. This medium-level BFS adventure is a panoramic sweep—queue up and explore!
Example
Input: root = [3,9,20,null,null,15,7]
Tree:
3 / \ 9 20 / \ 15 7
Output: [[3], [9, 20], [15, 7]]
Input: root = [1]
Output: [[1]]
Input: root = []
Output: []
Code
Java
Python
JavaScript
class Solution {
public List> levelOrder(TreeNode root) {
List> result = new ArrayList<>();
if (root == null) return result;
Queue queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int levelSize = queue.size();
List level = new ArrayList<>();
for (int i = 0; i < levelSize; i++) {
TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) queue.offer(node.left);
if (node.right != null) queue.offer(node.right);
}
result.add(level);
}
return result;
}
}
from collections import deque
class Solution:
def levelOrder(self, root):
if not root:
return []
result, queue = [], deque([root])
while queue:
level_size = len(queue)
level = []
for _ in range(level_size):
node = queue.popleft()
level.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(level)
return result
function levelOrder(root) {
if (!root) return [];
let result = [], queue = [root];
while (queue.length) {
let levelSize = queue.length;
let level = [];
for (let i = 0; i < levelSize; i++) {
let node = queue.shift();
level.push(node.val);
if (node.left) queue.push(node.left);
if (node.right) queue.push(node.right);
}
result.push(level);
}
return result;
}
Explanation
- BFS Insight: Queue processes nodes level by level, ensuring top-down order.
- Flow: For each level, dequeue all nodes, enqueue their children, repeat.
- Example Walkthrough: [3,9,20,null,null,15,7] → queue=[3], [9,20], [15,7] → [[3],[9,20],[15,7]].
- Key Detail: levelSize tracks nodes per level to separate results.
- Alternative: DFS with level tracking possible but less intuitive.
Note
Time complexity: O(n), Space complexity: O(w) where w is max width. A BFS beauty—layered and lovely!
